Physics Unit 6 – Newton's Laws Notes		1	Name	
		1	Date	Block
Vocabulary				
• Mass – A measure of	f the amount of	·		
• Inertia – The tenden	cy of an object to	change in	motion	
 More specification 	ally to <i>resist</i>			_·
Newton's First Law of Mo	tion			
Objects at	stay at	until acted	d upon by an	outside force.
• Objects in	will stay in straigh	nt line	unt	til acted upon
by an outside force.				
 Both statement 	ats are only true if the object	ct is acted upon by forc	es that are	
	or	_•		
Force				
• A force is a	or a	on an object.		
• There are two genera	l kinds of forces.	v		
-	Force - requires t	wo objects to touch each	ch other	
Pushing	g a sled, kicking a ball	•		
0	Force - does not a	require contact		
Gravity	/			
 Types of Forces 				
o <u>Force of Grav</u>	<u>ity</u>			
Symbo	1:			
	present			
Measur	rement of the	of an object		
o Normal Force				
Symbol	1:			
Need c	ontact with a			
Points	to	the surface		
o Force of Fricti	<u>ion</u>			
Symbol				
	motion or a		at motion	
Points	to t	he surface		
 Applied Force 	2			
Symbo				

• A push or a pull

Specific examples: Tension, Spring, Thrust

The _	is represented by a small
The dots are surrounded by that represent all of the	
	that act on a given object.
The _	of the arrow represents the of the force
•	A long arrow would have a larger force than a small arrow
Γhe _	of the arrow shows force is a!
	nples:
•	A book held in your hand at rest.
	A book pushed at a constant velocity across the desk by your hand.
	Assume friction.
•	A book is sliding across the desk at a constant velocity. Assume no friction.
•	A book at rest on a desk when your hand is pushing down on it.
•	A book just after you removed your hand from underneath.
	Bob pushes a crate with a 10 N force to the right while Mark pushes to the le
	with a 5 N force. Draw a free body diagram for the crate.
•	A boy is standing on the playground pulling a sled with 2 more boys on it. The
	weight of the sled is 200 N and the boy pulls with 100 N of force. Draw a free
	body diagram for the sled.

Net Force

- If the forces up/down (y-direction) & left/right (x-direction) ...
 - \circ net F =
 - o This is an example of _____ or ____
- If the forces up/down (y-direction) & left/right (x-direction)
 - \circ net F =
 - O This is an example of ______
- Examples:

Situation A

Situation C

Mass & Weight

- Mass
 - o symbol:
 - o units:
 - An intrinsic property of matter that ______ as an object is moved from one location to another.

• Weight

- o symbol:
- o units:
 - The force of gravity acting on the object and ______ from one location to another.

• Example:

- A rightward force of 60 N is applied to a book so that it moves with a constant velocity. Friction is present.
 - Draw the freebody diagram.
 - If the book has a mass of 45 kg, calculate its weight.
 - What is the normal force?
 - What is the frictional force?

Friction

• Station	c Friction	
0	Symbol:	
0	t, but it is	
	to between the 2 surface	ces in contact.
0	Equation:	
• Kine	tic Friction	
0	Symbol:	
0	The friction that exists once 2 surfaces	(moving) over one
	another.	
0	Equation:	
• Exan	nples:	
0	A 120-kg crate is being pushed at a constant velocity. If the	ne coefficient of kinetic friction
	is 0.2, what is the frictional force exerted on this object?	
0	A 59-kg skier is standing motionless on a horizontal patch	of snow. She is holding onto a
O .	horizontal tow rope, which is about to pull her forward. The	
	between the skis and snow is 0.14. What is the magnitude	
	tow rope can apply to the skier without causing her to move	ve?
Foress and	Amalaa	
Forces and		wohlams involving angles and
• see incli	worksheets for FBD diagrams and work related to solving p	robiems involving angles and
incii	nes.	
Newton's S	econd Law of Motion	
	eleration is	
0	If you double net force, acceleration will	·
0	If you cut net force in 1/3, acceleration will	·
• Acce	eleration is	to mass.
	If you double mass, acceleration will	
	If you cut mass in 1/4, acceleration will	

• Equation:

• Examples:

xai	nples:
0	A bike has a mass of 18 kg. Someone pushes sideways with a force of 20 N to cause the bike to move to the left. The frictional force along the floor is 12 N. What is the acceleration of the bike? <i>Draw a FBD</i> .
0	An applied force of 30 N is used to accelerate an object that weighs 60 N to the right across a frictional surface. If the coefficient of kinetic friction is 0.25, what is the object's acceleration? <i>Draw a FBD</i> .
0	A 1225 kg car can accelerate from rest to 30.0 m/s in 6.50 s. How much net force does it take to cause this acceleration? <i>Draw a FBD</i> .
0	A tow rope is used to pull a 1750-kg car, giving it an acceleration of $+1.35$ m/s ² . If the frictional force is 600 N, what force does the rope exert? <i>Draw a FBD</i> .
0	A 50-kg bucket is being lifted by a rope. The rope is guaranteed not to break if the tension is 500 N or less. The bucket started at rest, and after being lifted $+3.0$ m, it is moving at 3.0 m/s. Assume the acceleration is constant. Determine the tension (F _A) in the rope and if the rope is in danger of breaking. <i>Draw a FBD</i> .
0	The Rock 'n Roller Coaster at Disney's Hollywood Studios has a mass of 1800 kg. It starts from rest and travels 110.0 m in 7.0 s. An applied force of 8744 N is required to accelerate the coaster during this time. <i>Draw a FBD</i> . • What is the force of friction the car experiences from the track?

• What is the coefficient of friction?

0	nples (with Angles & Inclines): A 30-kg wagon is pulled from rest by a force of 100 N directed 25 degrees off horizontal causing the wagon to acceleration. Assume friction is negligible. How quickly does the wagon accelerate? <i>Draw a labeled FBD</i> .
0	A 1000-kg crate slides down a hill that is 30 degrees off horizontal with a constant acceleration of +1.0 m/s/s. <i>Draw a FBD</i> . • What is the value of the frictional force the crate experiences? • Determine the coefficient of friction.
0	A water skier weighing 539 N accelerates at +0.75 m/s/s. The tension in the rope that pulls the skier is 200 N directed 15 degrees off horizontal. <i>Draw a FBD</i> . • What is the value of the frictional force exerted on the skier by the water? • What is the value of the normal force?
0	A 500-kg crate comes to rest while sliding up a hill that is 50 degrees off horizontal. The coefficient of kinetic friction is 0.25. What is the value of the acceleration of the crate? <i>Draw a FBD</i> .

Newton's Third Law of Motion

- Initial Thoughts...Imagine a bug getting hit by a car...
 - \circ If the car is moving with some velocity v_C , and hits a bug that is stationary (at rest), who feels more force, the bug, the car, both are the same, both feel nothing?
 - \circ If the car is at rest and the bug has velocity v_B , who feels more force, the bug, the car, both are the same, both feel nothing?
 - o If they both have velocity towards each other, who feels more force, the bug, the car, both are the same, both feel nothing?

•	Involves the interaction of	and	1

- For two objects in contact with each other, when object A acts on B with a force, object B acts on A with an _____ (in size) and _____ (in direction) force.
 - For every action there is an equal and opposite reaction!