\qquad
\qquad Block \qquad

Vocabulary

- Mass - A measure of the amount of \qquad .
- Inertia - The tendency of an object to \qquad change in motion
- More specifically... to resist \qquad .

Newton's First Law of Motion

- Objects at \qquad stay at \qquad until acted upon by an outside force.
- Objects in \qquad will stay in straight line \qquad until acted upon by an outside force.
- Both statements are only true if the object is acted upon by forces that are
\qquad or \qquad .

Force

- A force is a \qquad or a \qquad on an object.
- There are two general kinds of forces.
- \qquad Force - requires two objects to touch each other
- Pushing a sled, kicking a ball

○ \qquad Force - does not require contact

- Gravity

- Types of Forces

- Force of Gravity
- Symbol:
- \qquad present
- Points \qquad
- Measurement of the \qquad of an object
- Normal Force
- Symbol:
- Need contact with a \qquad
- Points \qquad to the surface
- Force of Friction
- Symbol:
- \qquad motion or an \qquad at motion
- Points \qquad to the surface
- Applied Force
- Symbol:
- A push or a pull
- Specific examples: Tension, Spring, Thrust
- Representing Forces with Freebody (Force) Diagrams
- The \qquad is represented by a small \qquad .
- The dots are surrounded by \qquad that represent all of the
\qquad that act on a given object.
- The \qquad of the arrow represents the \qquad of the force. - A long arrow would have a larger force than a small arrow
- The \qquad of the arrow shows force is a \qquad
- Examples:
- A book held in your hand at rest.
- A book pushed at a constant velocity across the desk by your hand. Assume friction.
- A book is sliding across the desk at a constant velocity. Assume no friction.
- A book at rest on a desk when your hand is pushing down on it.
- A book just after you removed your hand from underneath.
- Bob pushes a crate with a 10 N force to the right while Mark pushes to the left with a 5 N force. Draw a free body diagram for the crate.
- A boy is standing on the playground pulling a sled with 2 more boys on it. The weight of the sled is 200 N and the boy pulls with 100 N of force. Draw a free body diagram for the sled.

Net Force

- If the forces up/down (y-direction) \& left/right (x-direction) \qquad ...
- net $\mathrm{F}=$
- This is an example of \qquad or \qquad
- If the forces up/down (y-direction) \& left/right (x-direction) \qquad ...
- net $\mathrm{F}=$
- This is an example of \qquad
- Examples:

Mass \& Weight

- Mass
- symbol:
- units:
- An intrinsic property of matter that \qquad as an object is moved from one location to another.
- Weight
- symbol:
- units:
- The force of gravity acting on the object and \qquad from one location to another.
- Example:
- A rightward force of 60 N is applied to a book so that it moves with a constant velocity. Friction is present.
- Draw the freebody diagram.
- If the book has a mass of 45 kg , calculate its weight.
- What is the normal force?
- What is the frictional force?

Friction

- Static Friction
- Symbol:
- The friction that exists when a force is applied to an object, but it is \qquad to \qquad between the 2 surfaces in contact.
- Equation:
- Kinetic Friction
- Symbol:
- The friction that exists once 2 surfaces \qquad (moving) over one another.
- Equation:
- Examples:
- A 120-kg crate is being pushed at a constant velocity. If the coefficient of kinetic friction is 0.2 , what is the frictional force exerted on this object?
- A 59-kg skier is standing motionless on a horizontal patch of snow. She is holding onto a horizontal tow rope, which is about to pull her forward. The coefficient of static friction between the skis and snow is 0.14 . What is the magnitude of the maximum force that the tow rope can apply to the skier without causing her to move?

Forces and Angles

- See worksheets for FBD diagrams and work related to solving problems involving angles and inclines.

Newton's Second Law of Motion

- Acceleration is \qquad to net force.
- If you double net force, acceleration will
- If you cut net force in 1/3, acceleration will \qquad .
- Acceleration is \qquad to mass.
- If you double mass, acceleration will \qquad .
- If you cut mass in 1/4, acceleration will \qquad .
- Equation:

- Examples:

- A bike has a mass of 18 kg . Someone pushes sideways with a force of 20 N to cause the bike to move to the left. The frictional force along the floor is 12 N . What is the acceleration of the bike? Draw a FBD.
- An applied force of 30 N is used to accelerate an object that weighs 60 N to the right across a frictional surface. If the coefficient of kinetic friction is 0.25 , what is the object's acceleration? Draw a FBD.
- A 1225 kg car can accelerate from rest to $30.0 \mathrm{~m} / \mathrm{s}$ in 6.50 s . How much net force does it take to cause this acceleration? Draw a $F B D$.
- A tow rope is used to pull a $1750-\mathrm{kg}$ car, giving it an acceleration of $+1.35 \mathrm{~m} / \mathrm{s}^{2}$. If the frictional force is 600 N , what force does the rope exert? Draw a FBD.
- A $50-\mathrm{kg}$ bucket is being lifted by a rope. The rope is guaranteed not to break if the tension is 500 N or less. The bucket started at rest, and after being lifted +3.0 m , it is moving at $3.0 \mathrm{~m} / \mathrm{s}$. Assume the acceleration is constant. Determine the tension $\left(\mathrm{F}_{\mathrm{A}}\right)$ in the rope and if the rope is in danger of breaking. Draw a $F B D$.
- The Rock 'n Roller Coaster at Disney's Hollywood Studios has a mass of 1800 kg . It starts from rest and travels 110.0 m in 7.0 s . An applied force of 8744 N is required to accelerate the coaster during this time. Draw a FBD.
- What is the force of friction the car experiences from the track?
- What is the coefficient of friction?
- Examples (with Angles \& Inclines):
- A 30-kg wagon is pulled from rest by a force of 100 N directed 25 degrees off horizontal causing the wagon to acceleration. Assume friction is negligible. How quickly does the wagon accelerate? Draw a labeled FBD.
- A $1000-\mathrm{kg}$ crate slides down a hill that is 30 degrees off horizontal with a constant acceleration of $+1.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. Draw a $F B D$.
- What is the value of the frictional force the crate experiences?
- Determine the coefficient of friction.
- A water skier weighing 539 N accelerates at $+0.75 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. The tension in the rope that pulls the skier is 200 N directed 15 degrees off horizontal. Draw a FBD.
- What is the value of the frictional force exerted on the skier by the water?
- What is the value of the normal force?
- A $500-\mathrm{kg}$ crate comes to rest while sliding up a hill that is 50 degrees off horizontal. The coefficient of kinetic friction is 0.25 . What is the value of the acceleration of the crate? Draw a FBD.

Newton's Third Law of Motion

- Initial Thoughts...Imagine a bug getting hit by a car...
- If the car is moving with some velocity v_{c}, and hits a bug that is stationary (at rest), who feels more force, the bug, the car, both are the same, both feel nothing?
- If the car is at rest and the bug has velocity v_{B}, who feels more force, the bug, the car, both are the same, both feel nothing?
- If they both have velocity towards each other, who feels more force, the bug, the car, both are the same, both feel nothing?
- Involves the interaction of \qquad and \qquad .
- For two objects in contact with each other, when object A acts on B with a force, object B acts on A with an \qquad (in size) and \qquad (in direction) force.
- For every action there is an equal and opposite reaction!

